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Abstract
Aim. Contact networks play a crucial role in infectious disease propagation and posi-

tion in the network mediate risk of acquiring or sending infections. We studied the spread 
of hospital-associated infections through computer simulations and validated our ‘com-
puter assisted’ risk assessment with ‘human’ risk assessment in a prospective study.

Concept. We collected time-varying structure of contacts and covariates reconstructed 
from Polish Hospitals:1. The organisational structure is mapped by a set of questionnaires, 
CAD maps integration, functional paths annotation and local vision. It is done mostly by 
surveys within medical staff through an interactive web application. 2. The Cohabitation 
layer processes data from the registry of patient admissions and discharges from each hos-
pital unit (wards, clinics, etc.) and medical shift register. With simulated infection paths, 
we were able to compute network centrality measures for patients. We obtained the risk 
of getting infected, based on the patient’s incoming connections, and the risk of spread-
ing infections resulting from outgoing connections. We compare various standard central-
ity measures – position of patients and staff in contact networks (‘computer assisted’ risk 
assessment) of both contacts and paths networks, with a predictor of ‘human’ risk percep-
tion (based on 190 patients).

Results. We showed that the best predictor of HAI risk is Adjusted Rage Rank on paths (r 
= 0.42, p < 0.01). However, surprisingly good predictive power in risk assessment was found 
in the betweenness centrality of the underlying network of contacts (r = 0.30, p < 0.01).

Conclusion: We conclude that epidemiology of a given pathogen in a given place and 
time could be explained only with the contact network only to a large extent. However, fur-
ther possibility of the collection, processing and storage of the data on individual persons, 
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translated to mathematical modelling could lead in future to satisfactory improvement in 
risk assessment.

Keywords: e-health, hospital infections, tele-medine, epidemiological modelling, sup-
port decision system, epidemiological intelligence

Introduction
We want to present a hospital infection risk assessment system, which is a part 

of a bigger SIRSZ ‘System Informatyczny Redukcji Szpitalnych Zakazen’ project 
(www.sirsz.pl) trying to increase the understanding of how pathogens are trans-
mitted in Polish hospitals by epidemiological modelling (Jarynowski, Marchewka, 
& Grabowski, 2017). Human health and life is the most precious gift. However, 
data needed for our models usually already exists in Polish hospital/organisa-
tions/insurance/public health authorities databases, but rarely has been modelled 
(up to our knowledge) from epidemiological intelligence perspective (Jarynowski, 
Grabowski, 2019). The spread of the SARS-CoV-2 virus has made infectious disease 
modelling, in its broadest sense, a useful tool among researchers and IT communi-
ties. The current COVID-19 pandemic makes not only modelling techniques very 
popular, but so many representatives of the medical community are more and more 
familiar with the crucial concepts of risk assessment and estimations of probabili-
ties of infections. Thus, development of new procedures for dealing with COVID-19 
outbreaks of other infectious diseases through the use of contact tracing tools and 
social network analysis has speeded up recently (Ahmed et al., 2020). 

Hospital infection and Infection Control
Hospital infections (called also nosocomial infections, hospital acquired infec-

tions, healthcare associated infections) are the most common adverse events in 
Polish healthcare (Wojkowska-Mach et al., 2016). Of the 4 million patients who go 
to Polish hospitals every year, 5-15% of the patients (Cassini et al., 2016; Seweryn, 
2018) acquire infections (between 200 and 600 thousand) and it costs more than 
800 milion PLN due to subsequent treatment and compensation paid to infected 
patients. Polish hospitals are obligated both by national and European legal stand-
ards to prevent and control hospital infections. Hospital pathogens (mainly bac-
teria) may also acquire antibiotics resistance (Rodríguez-Rojas et al., 2014). The 
scale of the problem can be illustrated by projections that in the next 30 years more 
people would die due to antibiotic resistance than cancer (O’Neill, 2016). In Polish 
hospitals, the prevention of nosocomial infections is mainly based on proper 
hygiene (standard isolation) and passive surveillance, but there are no tools avail-
able to identify sources and predict most likely infection paths (Wasilewski, 2018). 
On the other hand, most of Polish hospitals adopted ubiquitous IT solutions and 
complex business intelligence models for administration and economical pur-
poses (Jarynowski & Grabowski, 2019).
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Epidemiology of hospital infections differs not only between pathogens, but 
also for example between clinic types (Donker, Wallinga & Grundmann, 2010). 
Transmission can not only occur directly via human-human contacts, but also 
come from environment or medical instruments (de Bruin, Seeling & Schuh, 
2014). Immunocompetency of a patient can also play a role, while a patient with 
some condition can be a non symptomatic carrier/colonised (Piszczek et al., 
2014; Rocha et al., 2020) or sometimes pathogens can cause deadly diseases such 
as Sepsis. 

We trained our software to work with few pathogens (MRSA, In  uenza, 
Clostridium Dif  cile, Acinetobacter Baumani, Klebsiella Pneumoniae NDM), but 
we use methicillin-resistant Staphylococcus aureus (MRSA) as a model organism, 
because: it is mostly related to hand transmission; it is largely restricted to health 
care institutions (at least in Europe); and  nally, MRSA evolves clonally (Donker, 
Wallinga & Grundmann, 2010). The MRSA is resistant to more than half of all 
antibiotics and it was known to be the single largest care-related infection problem 
(Stenhem, 2006) for many years. For such infectious diseases, in which close con-
tact is needed for the transmission to occur, an individual’s position in the contact 
network is important for that person’s risk of getting infected (Liljeros, Giesecke 
& Holme, 2007). 

Aim of system development and prospective observational study 
We propose an electronic system of hospital infections risk assessment (free of 

charge, open licensed) for local use in hospitals. The primary version of the soft-
ware is in Polish, but it has an English branch. Pilot implementation was done in a 
few Polish hospitals, where in two of them our software was validated in prospec-
tive observational study. 

The aim of the presented tool is to extract infection paths within multilayer 
networks in hospitals on our own example of risk assessment implementation. 
Backward contact tracing is a key method (ECDC, 2020) for understanding trans-
mission chains (COVID-19 showed how important it is). Digital tools can play 
a role in enhancing forward (as we proposed in this tool) contact tracing activi-
ties (WHO, 2020). Methods to analyse the contact network of persons visiting 
the same hospital ward have already been applied (Jarynowski & Liljeros, 2015). 
However, understanding in which way all layers (Fig. 1) organisational (Ueno 
& Masuda, 2008), spatial (Teixeira et al., 2015) and of course empirical network 
structure affects the transmission of infections were still missing. We have investi-
gated some of blind spots, because previous approaches have been homogeneous 
in terms of methodology used. We clari  ed possibilities to extend the computa-
tional model of disease spread as a freely available tool via incorporation of the 
detailed contact structure on intra-hospital level as obtained from Polish hospitals 
via surveys and co-location analysis. 
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Networks, modelling and hospital infections

Fig. 1. Structure of hospi tal interactions implemented in our System, where node is a 
given person (patient, staff) and link is a contact [left] Multilayer approach combin-
ing cohabitation layer with organisational layer of the network [right] Illustrative 
diagram representing possible hierarchical organisational structure in hospital.
Source: Own elaboration

Health care institutions are associated with many hospital-speci  c pathogens 
such as opportunistic bacteria. The awareness of the importance of contact net-
works has brought methods from sociological studies of social networks into 
the area of preventive infectious disease protection work and exploded due do 
COVID-19 pandemic (Jarynowski, 2014; Tahir et al., 2021). The contact patterns 
and network structures observed in the general population are also present in 
hospitalised patients and thus in  uence the propagation of hospital-associated 
pathogens. Close proximity interactions can be also measured by electronic sen-
sors (Vanhems et al., 2017) are increasingly used to inform contact networks. By 
analysing the disease transmission in hospital populations from studies using 
sensors (eg. beacons) for contact identi  cation, we can receive prior weights of 
our networks (Obadia et al., 2015). Comparing data collected in our study with 
sensoric ones (with much higher resolution), the full temporal portrait can be 
explored (Valdano et al., 2015). In our case, it is assumed that individuals only 
meet in hospitals. Moreover, Inter-hospital interactions can be also measured by 
referral networks and are increasingly used to inform contact networks (Belik et 
al., 2017). In other chapters of SIRSZ project, we analyse both intra and inter hos-
pital transmissions (Jarynowski, Marchewka & Grabowski, 2017), however in this 
paper we study the dynamics for each single hospital separately. Advantages in 
our analysis gained by treating the hospital as a closed system are obscured due to 
certain medical interventions and hospital policy to diagnosed HAI cases by quar-
antine, cohorting and other epidemiological intervention. We use ABM (agent 
based modeling) computational techniques used for experiments with arti  cial 
systems populated by agents that interact in non-trivial ways (Jarynowski, 2014). 
This is probably the most common current approach to modelling by infectious 
disease epidemiologists (Heslop et al., 2017). Additionally, SNA (social network 
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analysis) serves as a methodology and set of tools enabling an exploration of inter-
acting agents - healthcare system participants (Fig. 1).

Decision Making Support System
Recently, the knowledge of complex system tools for sociology and medicine 

such as networks has undergone an accelerating growth, however all models of 
such systems are incomplete without real data, especially register-based (Ohst et 
al., 2014). Epidemiological modelling can support outbreak responses (Heslop et 
al., 2017) and COVID-19 pandemic (Becker et al., 2021). Simulation is relevant only 
if reliable data whose parameters can be calibrated to run simulations (Grundmann 
& Hellriegel, 2006). Prior parameters were adopted from literature review, but the 
requirement to calibrate the parameters for a given hospital can be satis  ed only 
if infection control team, IT and administration of the hospital would cooperate 
with modellers (Eggo, Cauchemez & Ferguson, 2011). The built model can not only 
describe the spread of pathogens, but the hospital team can gain experience in the 
innovative network perspective of analysing outbreaks not taughtu in Polish medi-
cal universities before COVID-19 pandemic. Computer assisted tools for hospital 
infections have already become part of clinical practices in many developed coun-
tries. However, there is still a lack of dynamic network models generating tempo-
ral networks of typical behaviour observed in real hospitals (Knight et al., 2019). It 
is already known that a computer-aided treatment planning of hospital infections 
can be more ef  cient and safer than “analog” with the involvement of the medical 
microbiologist (Leibovici, Kariv & Paul, 2013). Our tool could be part of a bigger 
hospital intelligence system (Adlassnig et al., 2012) and by synergy would help in 
effective decision making by epidemiological surveillance and intelligence, out-
break response, as well as infections prevention and , ultimately mitigation .

System description
The hospital system consists of three modules: initialisation question-

naire, extended simulation environment and desktop application with simula-
tion engine. We provide a user guide (http://platforma.sirsz.pl/course/view.
php?id=7) and manual (http://platforma.sirsz.pl/course/view.php?id=5) of the 
system in Polish. Our system allows us to collect and process locally time-vary-
ing structure of contacts reconstructed from patients’ e-records and staff surveys 
(currently only Polish hospitals). Our organisational networks were built via self-
reported data or direct observations on person-to-person interactions and func-
tional mobility. Our cohabitation layer is the proximity, that people who were 
registered in the same place at the same time are linked.

Input data of our software (method of collection in brackets): 
• DATA organisation: functional topology (manually); 
• DATA cohabitation: patients visits (automatic);
• DATA organisation: staff shifts (half-automatic); 
• DATA epidemiology: microbiological tests (semi-automatic). 
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Output: 
• risk assessment for patients (risk of acquiring infection and risk of infect-

ing others); 
• most likely paths of infections. 

Initialisation questionnaire
In this part, we ask the infection control team in the hospital to complete the 

survey (English version: www.platforma.sirsz.pl/hospital2) and export data to 
.csv  le to get started. Survey is available via the Internet (no information about 
patients is sent outside of the hospital) in Moodle technology (Fig. 2). The ques-
tionnaire consists of four groups of questions: 

1. hospital organisation (all hospital buildings and  oors, clinic/depart-
ments, etc.); 

2. ward/department organisation (selected hospital departments participat-
ing in program as subdivision to wards, number of beds, average occu-
pancy, ward type, percentage of transfers from other hospitals, location, 
patient rooms, other rooms, neighborhood structure of the rooms with 
nearest toilet location, etc.); 

3. staff work  ow (for nurses: where and how the nurses are working, for 
doctors: their time span in different wards, etc.); 

4. invasive procedures and patient transport (list of invasive procedures, 
procedures places, frequency of realisations, etc.).

Fig. 2.  Example of survey to  ll out: patient room (room id, location, number of 
beds, occupancy) 
Source: Own SIRSZ elaboration

In an effect of proper initialisation, we could also extract the social network of 
hospital staff (Miko ajczyk et al., 2008) from self-reporting diaries (Smieszek et al., 
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2012). There is Polish and English tutorial of initialisation questionnaire (http://
platforma.sirsz.pl/course/view.php?id=9#section-1). 

Extended simulation environment
The initiation results from the survey can be translated individually to the 

simulation environment. This is not a required component of implementation, but 
in this step the hospital provides the most information about its functionality. As 
all the procedures of the SIRSZ system are at least partially automatised, here an 
individualised process should be performed by the SIRSZ team on the basis of 
information obtained from the hospital. The main aim obtained by surveying is 
systemic understanding of the susceptibility of the healthcare setup (in current 
state or in any other possible states) to the occurrence of the outbreaks.

Fig. 3.  Netlogo representation of our extended simulation environment imple-
mented for a given clinic [left] Training environment for a given clinic with two 
ward at two  oors of the building simpli  ed using syntax theory of architecture 
[right] CAD adaptation of single ward with agents moving around it.
Source: Own research

We use free software Netlogo to build and run extended simulations. In the 
NetLogo programming language, the turtle is a representation of an agent (an 
autonomous, interacting entity). A patch is the elementary spatial unit in the Net-
Logo grid (element of the locations). The goal is to imitate real patterns by running 
(often computerised) an ABM under different interventions and conditions (Fig. 3). 
The main reason for using such a tool is its  exibility, and lso possibility to imple-
ment organisational habits not  tting to the frame of structuralised initialisation 
survey. We mainly model the movement of healthcare workers in the hospital top-
ological semantic space (simpli  ed version of metric spaces (Grabska, achwa & 
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lusarczyk, 2012)) according to surveys and local vision. Patients move along to 
a lesser extent (at least in the model), for example to the toilet. However, patients 
can be transported by staff to the procedure’s room. Movement of hospital agents 
allows us to construct contact networks (Curtis et al., 2010), which will be much more 
detailed than these collected in core parts of our systems. The  nal aim is to integrate 
a wide range of networks in which physical contact is a crucial factor. Within the 
proposed extended framework, we also study possible scenarios of organisational 
change as dedicating staff to patients, transport paths rerouting, shift distributions, 
geo-localisation isolated/cohorted patients, etc (Jaramillo et al., 2015). Built model 
describes the possible spread of pathogens and could indicate an effective strategy 
in the  ght against infectious diseases. That would help in effective decision making 
by epidemiological surveillance. However, proper implementation of such an envi-
ronment is extremely time consuming for each hospital, so our templates are more 
educational tools, than Decision Making Support engines. 

Desktop application
The application collects data from the initialisation questionnaire, the hospital 

information system (HIS) and uses them to run calculations. Application interface 
is written in Visual Basic and the executive engine of simulation is written in R. 
At this point our system does not communicate with the Internet and all import/
export procedures operate on the Intranet only. It is possible to manually enter 
some data directly into the application. 

Fig. 4.  Desktop Application Interface with marked functional  elds
Source: Own SIRSZ elaboration
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Graphical User Interface  is divided into seven parts (Fig. 4): 
1. Main menu 2. Preview  lter search 3. Content Management Panel (search, 

add, and delete entries from the database) 4. Navigation menus for switching 
between different forms 5. Data entry form 6. Preview the contents of the appli-
cation database. Presentation of search results. 7. Panel to run calculations and 
export data.

On the left of the program window, information about current browsing is 
displayed. In the middle part there is a user panel with buttons that allow viewing 
data and perform basic operations on them. On the right side of the window there 
are boxes showing the six main data types of information collected: 

• ward (clinic or ward description imported from initialisation survey); 
• room (room description imported from initialisation survey); 
• personnel (staff obligations imported from initialisation survey); 
• visit (patient visits imported from Hospital Information System); 
• test (microbiological test results entered manual by user); 
• shift (staff shift entered manually by user);
• patient (personalised hospitalisation history). This entity was not allowed 

to be edited by Personal Data Protection Of  cers in participating hospitals, 
but is available for non-Polish hospitals. 

There is Polish and English tutorial of desktop application (http://platforma.
sirsz.pl/course/view.php?id=9#section-2).

The application generates the most likely path of spreading infections and clas-
si  es patients into different risk groups with use of the model described in the 
following chapter. 

Mathematical Model 
Predictive modelling is a rapidly developing area in hospital infections and 

COVID-19 speeds up this process (Donker et al., 2021). Already widely applied in 
predictive models of interventions such as screening patients, modelling is a key 
input to policy and planning decisions in hospital epidemiology. Understanding 
how trends in prevalence and incidence will unfold from the beginning of the out-
break helps infection control teams evaluate and prepare for future priorities. The 
focus of our system SIRSZ is on building predictive models of hospital infections 
on a network and on assessing the value of modelling results for hospital epide-
miologists (which still does not exist in Polish law, but due to our voice in public 
consultation it could be improved (RPL, 2017)). 

The core mathematical model of infection transmission is SIR (Jarynowski & 
Grabowski, 2015), where patients population is divided into three classes: the sus-
ceptible (S), who can catch the disease; the infectious (I), who can transmit disease 
and have it; and the removed (R), who had the disease and have recovered (with 
immunity) or are isolated from hospital population. Staff is divided in two catego-
ries: the susceptible (S) and the infectious (I) but we understand such an infection 
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as a colonisation, because personnel usually do not develop clinical symptoms of 
diseases for most of hospital infections, but could still transmit pathogens.

Other models of infection propagation as SI (Jarynowski & Liljeros, 2015), 
Ising (Jarynowski & Grabowski, 2018) or Rumor (Grabowski & Jarynowski, 2016) 
have been also considered. Propagation simulation runs with a daily step on a 
weighted and temporal network of contacts between agents: patients, doctors and 
nurses. The contagion to a susceptible from infectious agent can occur scholas-
tically if there is a link between them at a given time with probability propor-
tional to weight. Weights correspond to mixing patterns between different levels 
of neighborhoods or different types of interactions. For example, a link between 
patients sharing the same room should be stronger than a link between patients in 
the same ward, but in other rooms. Moreover, the link between nurse and patient 
should be stronger than link between doctor and patient, because in general doc-
tors have many patients and spend much less time with a single one with less 
invasive procedures than nurse (on average).

Fitting procedure
We must  t two sets of parameters: parameters of SIR propagation and contact 

weighting parameters. Weighting matrix (weights on contact between different 
types of agents at a different level of neighborhood) is imported from an extended 
imputation environment (if skipped, baseline matrix is built in software). To  t 
SIR propagation we have started with a priori possible parameter range from 
literature (Sadsad et al., 2013; Jarynowski & Liljeros, 2015; Jaramillo et al., 2015; 
Rocha et al., 2020) as well as mixing coef  cient matrix from extended simulation 
environment/baseline. Then we took historical outbreaks from our hospitals. We 
have run classical SIR model over possible range of parameters with de  ned pen-
alty function which are based on (in order of importance): 

• Penalty of omitting really infected agents; 
• Penalty for wrong time of infections: sum over absolute difference between 

simulated and real infection time; 
• Additional penalty for too long big or too short infection chains: normal-

ised absolute difference between number of agents affected and number of 
simulated infections.

For  tting a single outbreak thousands of simulations were performed to mini-
mise penalty function. As the function is highly nonlinear, we do not expect to 
 nd a global minimum of the penalty function. Instead, a shorter list of few local 

minima is obtained. Such a ranked list forms a discrete distribution of a posteriori 
parameters space with intensity corresponding to local penalty estimates. Such a 
 tting is very computationally costly, so it was not performed at a local computer 

in hospitals, but at a high performance computer cluster.
If no outbreak of a given disease was observed in hospital before or cohabita-

tion/staff data was not available, then  tting procedure is skipped and a priori or 
manipulated ‘by hand’ parameters will be used in prospective simulations.
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Retrospective outbreak investigations
With a given dataset and parameter set, a retrospective prediction can be per-

formed. This is a case to learn how to use tools by explaining historical outbreaks. 
To do so, we move back in time to the beginning of an outbreak. We take one up to 
few  rst cases as sources of propagation. We run propagation of the pathogen and 
obtain simulation paths of infections. Our system registers all virtual transmission 
events (who infected who and when). Cumulative network of such transmission 
links is mapped on network, where agents are nodes and weighted links are pro-
portional to number of virtual transmissions accrued on the link. We search for the 
most likely paths in such a network (usually there are many of them), by calculat-
ing the shortest path between sources and nodes (agents who could take part in 
transmission paths). We compare visually if computed paths are similar to those 
revealed in outbreak investigation. There is possibility to play with visual pres-
entation of the simulating path by manipulating layout function (fruchterman-
reingold method is implemented (Csardi & Nepusz, 2006)) or cut-off threshold 
(minimal number of transmission events for a link to appear). 

Fig. 5. Cumulative transmission paths of hospital infections [left] 281 infected 
cases in non-Polish hospital outbreak (only infected patients presented) [right] 8 
infected cases in Polish hospital outbreak (all possible hospital agents – patients 
and personnel – presented with actually infected on color).
Source: Own research

Risk assessment is calculated based on node centrality (Landherr, Bettina & 
Heidemann, 2010) calculation. We consider few centrality measures which take 
into account not only local, but also global importance of a given node (Parad-
owski et al., 2021). The  rst guess for risk in classical network’s theory (Rustam, 
2006) is betweenness centrality (number of shortest path passing nodes). For 
better description of in- centrality, Page Rank Algorithm was also implemented 
in our software. However, we are interested in both in- and out- centrality, where 
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betweenness is neutral and Page Rank is dedicated to incoming links only (Csardi 
& Nepusz, 2006). To compensate for the low values of Page Rank at the beginning 
of the outbreak, weights for input to Page Rank algorithm were modi  ed. We up-
weigh each link in inverse proportion on steps of simulation (new node’s attach-
ment time in days) to evaluate agents in the early steps (more close to the sources). 
We call this new measurement - Adjusted Page Rank. For out- centrality, we use a 
negative version of Page Rank (transposed directions of the graph). 

Results
We have created the environment for testing our innovative risk assessment 

models that could increase safety of care. We had performed discussion sessions 
with infection control teams on organisational and medical prior parameters, we 
also had  tted actual parameters, so at the end we attended to validate the ability 
of this tool in hospital epidemiology. For evaluation of our system we test its per-
formance in retrospective as well in the most important prospective study. 

Retrospective validation study
Retrospective validation was a qualitative procedure of verifying if there is sig-

ni  cant information in a real contact network and simulated path of infections. We 
examined our collected networks in comparison to social contact empirical studies 
like in hospitals in Lyon (Vanhems et al., 2013) and Rome (Barrat et al., 2010) as 
well as with other physical contacts as Polish chapter of Polymod (Grabowski & 
Rosi ska, 2012; Miko ajczyk et al., 2008). 

Fig. 6. A single day of a single clinic containing three wards. Personnel is coloured 
Source: Own research

On a given example of two week observation: network of 152 patients and 
101 personnel staff we obtained: Louvain Clustering procedure revealed 3 com-
munities, global clustering coef  cient 0.6, average path length 1.9, mean degree 
31, median links loyalty 20%. Our extractions do not vary so much with other 
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hospitals or other physical contact networks from both dynamic and static 
perspectives. 

We attempted to verify if the extracted network contains explanatory value 
for transmission events. To do so, we used historical outbreaks we have access to, 
with the number of infections greater than 2 and we shuttled the links, thus real 
temporal and topological structure were permuted (Rocha et al., 2020). Probabil-
ity of acquiring infection if being in contact with infected according to procedure 
proposed in hospital study in Normand (Obadia et al., 2015) was signi  cantly 
higher (p < 0.01) in real than perturbed network. Moreover, brokerage between 
two branches of outbreaks representing personnel was correctly indicated by 
algorithm (Fig. 5), as it was indicated in the outbreak investigation. 

Prospective validation study
Prospective study was performed during weeks 17-21.07.2017 and 12-16.11.2017 

from selected wards in two different hospitals. Infection control team members 
inspected all patients (190) that time and assessed their risk according to their 
experience on the scale -3 (very low risk),-2,-1,0 (average risk),1,2,3 (very high risk) 
for a chance of acquiring infections. Within those 190 patients, only 35 patients 
have been assessed for risk of infecting others (out). Normality of in-risk humant 
assessment was satis  ed, so we will use Pearson correlation. Agreement between 
system’s risk assessment (in underlying contact network as well process path 
dimensions) and personnel’s assessment was given in the table (Table 1).

Table 1
Pears on Correlation coef  cients of algorithmic risk measurements (centralities) against 
human assessment for infection in/out risk. 
Observation network type  risk in (correlation)  risk out (correlation) 
betweenness contacts  0.30**  0.63 
betweenness paths  0.02 -0.64 
closeness paths  0.20*  -0.15 
eigenvector paths  0.19* -0.18 
PageRank (in/out) paths  0.35**  0.30 
adjusted PageRank (in/out) paths  0.42**  0.39 

Note ** Statistically signi  cant correlation (p < 0.01), * (p < 0.05) 
Source: Own research

Correlations for out risk measurements were not signi  cant mainly due to 
the small number of cases for personnel’s risk-out assessment. For in-risk assess-
ment, as we expected, Adjusted Page Rank centrality of paths re  ects the best 
human perception of risk (correlation 0.42). The simple network of contacts 
reasonably well explains the risk (correlation 0.3) with betweenness centrality 
(Kitsak et al., 2010). However, the same betweenness centrality measurement 
does not work with simulated paths and loose even with eigenvector or close-
ness centralities. 
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Discussion
Infectious disease informatics (epidemiological intelligence) is an already 

established scienti  c  eld, but still underrepresented in Poland. Control of infec-
tious diseases in hospitals has been one of chief roles of public health to date 
and there are many challenges successfully solved by mathematical modelling 
globally (Jarynowski & Grabowski, 2015). We developed a preliminary veri  ed 
functional system in the form of a free application for automatic risk assessment. 
It focuses on hospital networks and speci  cally on the impact of co-location net-
works on the spread of hospital-associated pathogens. Contact networks in hos-
pitals can be obtained with many methods and most of them can be classi  ed 
into:

• hierarchical organisation studies (Ueno & Masuda, 2008);
• empirical cohabiting studies (Jarynowski & Liljeros, 2015);
• empirical sensor studies (Obadia et al., 2015).

Only organisational or only empirical interactions were previously mod-
elled by many researchers, however, an integrative framework combining these 
approaches in order to study the spatial and temporal dynamics of disease 
spread was missing until our project. With simulated infection paths, we are 
able to compute network measures for patients. We can obtain the risk of getting 
infected, based on the patient’s incoming connections, and the risk of spreading 
infections resulting from outgoing connections, both from network centrality 
measures (Kitsak et al., 2010). The results of the algorithms can be presented 
’real-time’ to a hospital epidemiologist for interpretation and applying pre-
ventive control by assigning places and individuals into different risk groups. 
We indicate the best one which is the Adjusted Rage Rank algorithm (Table 1). 
However, surprisingly good predictive power for risk assessment was found in 
betweenness centrality of the underlying network of contact. It can mean that 
speci  c epidemiology of a given pathogen in a given place and time could be 
reduced only to contact networks. Moreover at least two European projects have 
been assessing only contact networks (Health-i-care, 2017; EmerGe-Net, 2017), 
so modelling the spreading process is not as important as understanding the 
network behind it. 

Limitations
Models attached to our software can be more or less useful, but the opera-

tional aim of modelling for hospital infections is to advise infection control teams 
in their work. The  nal aim of our computational software was providing mean-
ingful analysis and calculations to support decisions of great importance for the 
hospital epidemiology, but we are not yet there. In the future our system could be 
an effective tool in the  ght against infectious diseases. 

The main limitation of our study was having no outbreak in prospective study. 
Accuracy measured in prospective study was better than in similar projects (how-
ever it is dif  cult to compare studies with different epidemiological situations and 
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data availability). We still do not know how our algorithm will cope with ‘real-
time’ projection during an ongoing outbreak, because we analysed such scenarios 
only retrospectively as no outbreak happened during our prospective study. Even 
though the utility of using our system is moderate at this moment, we put a strong 
focus on problem based learning of transmission patterns and evaluating disease 
interventions. This was an introduction to healthcare workers to digital epide-
miology and modelling supporting decisions in infection control (de Bruin et al., 
2014). Unfortunately, our solution is of  ine and most of the data must be imput 
by hand. Cloud service and automatic data collections from HIS would increase 
usability of such a system (Czekaj et al., 2021; Vitabile et al., 2019).

As most of the modeling literature concentrates on MRSA, our software is 
also primarily adjusted to this pathogen (Rocha et al., 2020). However, current 
epidemiological trends in Poland showing emergence of Carbapenem-resistant 
enterobacteriaceae (Deptu a, et al., 2015), Clostridium Dif  cile (Sadkowska-
Todys, Zieli ski & Czarkowski, 2017) and Acinetobater Baumani (Jarynowski, 
Marchewka & Grabowski, 2017), and we also try to adjust our model to the newest 
situation. Thus, further model improvement should assess mentioned pathogens, 
because their transmission dynamics translated to mathematical modelling is still 
not satisfactory described. 

Conc lusion and Future Plans
Powerful computer facilities and ubiquitous GPS and bluetooth devices have 

made possible the collection, processing and storage of the data on individual per-
sons (Belik, Geisel & Brockmann, 2011), especially in a total institution such as a 
hospital. With using electronic logins for staff and patients or beacons in future, we 
could skip heuristic techniques for model parameterisation for each place and each 
healthcare, so it would solve problems with current staff computationally tractable. 
In addition to obtaining numerical risk indicators, the infection control team is map-
ping the infection ecosystem in their hospital. Expanded knowledge about the struc-
ture of contacts gained with SIRSZ system may be translated into the epidemiologi-
cal safety of patients. COVID-19 pandemic changed the organisational behaviour of 
the health care staff to cluster contacts and avoid bridging infection between wards 
as it was shown on Figure 5, where a staff member was identi  ed as an infection 
transmitter from one to another location in hospital. Moreover, mobile phone apps 
and beacons (mainly bluetooth badges) have been applied in monitoring people 
outside of hospitals setting in COVID-19 contact tracing context (Kontakt, 2020). 
We believe that the implementation and future development of the ICT solutions 
implemented during the COVID-19 pandemic will allow for better risk assessment, 
and this will translate into the safety of hospitalized patients.

Personalization and Phylogenetic outbreak investigation
With Patient Electronic Medical Record data providing reasonably accurate 

information on procedures and comorbidities (Furuya-Kanamori et al., 2017), 
additional layer of risk assessment could be build as it was partly done for Cesar-
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ean Section Surgical Site Infection (Ró a ska et al., 2018) in other branch of the our 
System SIRSZ. We are planning to integrate risk assessment for a given patient due 
to network position with risk assessment due to procedures and comorbidities. 

Using genetic pathogens relationships through phylogenetic inference meth-
ods could also help in evaluation of observed transmission paths. We can take a 
group of genomes of isolates from patients and construct phylogenetic trees on the 
basis of sequence variation in different genes as single nucleotide polymorphisms 
(SNPs) (Sadsad et al., 2016). In future, genomic trees should be combined with 
epidemiological data for a better prediction. 
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